Increasing the coefficient of performance of a vapor compression refrigeration system may be realized by utilizing work recovering expansion devices that lower the enthalpy of the refrigerant at the inlet of the evaporator. Depending on the operational and geometrical parameters of the expander, laminar and viscous two-phase leakage flow within the expander may be present. Single-phase leakage models available in the literature must then be modified or re-derived accordingly. A dynamic frictional model for the expander must also be developed for ideal operation (i.e. no internal leakage) and modified to account for internal leakage accordingly. This paper presents a comprehensive component-level model of inherent friction and internal leakage losses in a two-phase circular rotary-vane expander used in a vapor compression refrigeration system. The model establishes the performance of the expander as a function of geometric and fluid parameters. Accurate modeling and prediction of frictional and internal leakage losses is vital to being able to accurately estimate the efficiency, rotational speed, torque and power of/produced by the expander. Directions for future work are also discussed.

This content is only available via PDF.
You do not currently have access to this content.