This study presents the concept, functionality, and economics of a solar-fired, single-effect, absorption air conditioning system. The goal of this project was to develop a mathematical model to determine efficiencies and capacities, which are then compared with a traditional 28 kW (8 ton) packaged vapor compression system. This comparison is then used to determine economic conclusions. The thermal system being examined is part of a proposed research and development project located in Phoenix, Arizona. This specific system will contain a six-module, single-axis, concentrating solar collector, a 119 gallon (450 L) storage tank, and a 35kW chiller. Using MatLab with Typical Meteorological Year 2 (TMY2) weather data [1], a model was created from readily available manufacturer specifications. After completing the model it was determined that the annual savings can range from $3,448 to $1,737 with simple payback periods of 18 to 36 years depending on collector efficiencies and current electrical rates. The model also proved that the proposed cooling system can supply over 20 kW of continuous cooling for 8 hours on a typical summer day.

This content is only available via PDF.
You do not currently have access to this content.