Thermodynamic analysis of a combined cycle producing power and refrigeration (cooling) effect simultaneously using solar energy has been analyzed. The working substance of the cycle is a binary mixture of ammonia and water. The effect of variation of absorber pressure, boiler pressure, boiler temperature and superheater temperature on the turbine work, refrigeration (cooling) effect and net output has been investigated. For different conditions of the above variables, the first law efficiency, the second law efficiency and the exergy efficiency of the cycle have been investigated. Since the ammonia water mixture boils at varying temperatures, Lorenz cycle instead of Carnot cycle is considered as the ideal cycle for this analysis. It is observed that the first law and the second law efficiencies are maximum under the same working conditions, but the exergy efficiency is maximum at some other working conditions. The maximum values of the first law, the second law and the exergy efficiencies are found to be 21.72%, 27.30% and 62.53% respectively.

This content is only available via PDF.
You do not currently have access to this content.