This paper gives a representative energy process-step model of hydrogen production in the U.S. Chemical Industry based on federal data. There have been prior efforts to create energy process-step models for other industries. However, among all manufacturing industries, creating energy flow models for the U.S. Chemical Industry is the most challenging one due to the complexity of this industry. This paper gives concise comparison of earlier studies and provides thorough description of the methodology to develop energy process-step model for hydrogen production in the U.S. Chemical Industry. Results of the energy process-step model of hydrogen production in the U.S. Chemical Industry show that steam allocations among the end-uses are: 68% to process cooling (steam injection to product combustion gases), 25% to process heating, and 7% to other process use (CO2 converter). The model also shows that the major energy consuming step in hydrogen production is the reformer, which consumes approximately 16 PJ fuel. During the course of this study, the most recent U.S. federal energy database available was for the year 1998. Currently, the most recent available U.S. federal energy database is given for the year 2002 based on the data collected from 15,500 establishments.

This content is only available via PDF.
You do not currently have access to this content.