Computational fluid dynamics simulations were performed to model solar ZnO dissociation in a tubular aerosol reactor at ultra-high temperatures (1900 K–2300 K). Reactor aspect ratios ranged between 0.15 and 0.45, with the smallest ratio base case corresponding to a reactor diameter of .02286 m. Gas flowrates were set such that the Ar:ZnO ratio was greater than 3:1 and the system residence time was below 2 s. The system was found to exhibit highly laminar flow in all cases (Re ∼ 10), but gas velocity profiles did not seriously affect temperature profiles. Particle heating was nearly instantaneous, a result of the high radiation heat flux from the wall. There was essentially no difference between gas and particle temperatures due to the high surface area for conductive heat exchange between the phases. Calculation of ZnO conversion showed that significant conversions (>90%) could be attained for residence times typical of rapid aerosol processing. Particle sizes larger than 1 μm negatively affected conversion, but sizes of 10 μm still gave acceptable conversion levels. Simulation of reaction of product oxygen with the reactor wall showed that a reactor constructed of an oxidation-sensitive material would not be a viable choice for a high temperature solar reactor.
Skip Nav Destination
ASME 2007 Energy Sustainability Conference
July 27–30, 2007
Long Beach, California, USA
Conference Sponsors:
- Solar Energy Division and Advanced Energy Systems Division
ISBN:
0-7918-4797-7
PROCEEDINGS PAPER
Computational Fluid Dynamics Simulation of a Tubular Aerosol Reactor for Solar Thermal ZnO Decomposition
Christopher Perkins,
Christopher Perkins
University of Colorado at Boulder, Boulder, CO
Search for other works by this author on:
Alan W. Weimer
Alan W. Weimer
University of Colorado at Boulder, Boulder, CO
Search for other works by this author on:
Christopher Perkins
University of Colorado at Boulder, Boulder, CO
Alan W. Weimer
University of Colorado at Boulder, Boulder, CO
Paper No:
ES2007-36252, pp. 915-927; 13 pages
Published Online:
February 24, 2009
Citation
Perkins, C, & Weimer, AW. "Computational Fluid Dynamics Simulation of a Tubular Aerosol Reactor for Solar Thermal ZnO Decomposition." Proceedings of the ASME 2007 Energy Sustainability Conference. ASME 2007 Energy Sustainability Conference. Long Beach, California, USA. July 27–30, 2007. pp. 915-927. ASME. https://doi.org/10.1115/ES2007-36252
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Computational Fluid Dynamics Simulation of a Tubular Aerosol Reactor for Solar Thermal ZnO Decomposition
J. Sol. Energy Eng (November,2007)
Splitting Water and Carbon Dioxide via the Heterogeneous Oxidation of Zinc Vapor: Thermodynamic Considerations
J. Sol. Energy Eng (February,2011)
A Simplified Numerical Approach to Characterize the Thermal Response of a Moving Bed Solar Reactor
J. Thermal Sci. Eng. Appl (August,2022)
Related Chapters
Scope of Section I, Organization, and Service Limits
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition
Energy Options and Terms: An Introduction
Energy Supply and Pipeline Transportation: Challenges & Opportunities
Radiative Properties of High Temperature Particles in Their Phase Transitions and Inverse Radiation Problem of Particles
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)