This paper deals with an exergetic performance analysis of a gas turbine cycle integrated with SOFCs with internal reforming. As the efficiency of a gas turbine cycle is mainly defined by the maximum temperature at the turbine inlet, this temperature is fixed at 1573 K for the analysis. In the cycle considered, the high-temperature gaseous flow from the turbine heats the input flows of natural gas and air, and is used to generate pressurized steam which is mixed with natural gas at the SOFC stack inlet to facilitate its conversion. The application of SOFCs provides the opportunity to reduce the exergy losses of the most irreversible process in the system: fuel combustion. Depending on the SOFC stack efficiency, the energy efficiency of the combined cycle reaches 70–80% which compares well to the efficiencies of 54–55% typical of conventional combined power generation cycles. Parametric studies are also undertaken to investigate how energy and exergy efficiencies of the integrated system change with variations in operating conditions. An increase in the efficiency of SOFCs is attained by increasing the fuel cell active area. Achieving the highest efficiency of the SOFC stack leads to a significant and non-proportional increase in the stack size and cost, and simultaneously to a decrease in steam generation, reducing the steam/methane ratio at the anode inlet and increasing the possibility of catalyst coking. Accounting for these factors, likely operating conditions of the SOFC stack in combination with a gas turbine cycle are presented.

This content is only available via PDF.
You do not currently have access to this content.