Laboratories are usually equipment intensive. The supply flow rates required to cool these laboratories are generally higher than in a less equipment intensive zone of the building. The thermal comfort of occupants in laboratories can be controlled by the choice of ventilation strategy. This study employs Computational Fluid Dynamics (CFD) simulation to assess the performance of active chilled beams in a general laboratory layout with some equipment intensive areas and the removal effectiveness of such a system. The chilled beam performance is also compared with at of ceiling diffusers. The results from this study show that the chilled beams improve thermal comfort, and they can be operated at as low as 4 ACH while maintaining very satisfactory average PPD (around 10%) in the occupied zones. The chilled beam system also improves removal effectiveness because of the inherent higher total supply flow rate that results in a better mixing in the room than ceiling diffusers. The chilled beams in the cases studied are seen to have an insignificant effect on the hood containment. As satisfactory thermal comfort and air quality can be achieved at a lower flow rate in comparison with all-air ceiling diffusers, a 14% saving is estimated in annual energy cost for cooling and ventilating a typical lab in the Washington DC area.

This content is only available via PDF.
You do not currently have access to this content.