Recent research investigated the impacts of single- and multi-variable stochasticity on optimum thermoelectric (TE) system design for automotive and industrial energy recovery because many critical design and environmental parameters used in design optimization can be randomly variable. Analysis tools and techniques have been developed to investigate a variety of stochastic behaviors in critical input parameters, including Gaussian, Log-Normal, Weibull, Gamma, or any type of user-defined probability distribution. Recent accomplishments discussed herein show that: 1) Gaussian input probability distributions can create non-Gaussian outcome distributions for optimum TE areas, required cold-side mass flow rates, and expected power generation; 2) optimum deterministically-derived designs (TE areas and cold-side mass flow rates) should be significantly modified in response to stochastically variable inputs; and 3) outcome parameter standard deviations can be significant and magnified relative to input parameter standard deviations. Multiple variable stochastic inputs tend to significantly increase the output design parameter variability (i.e., standard deviations). Interactive effects of multiple stochastic input parameters have demonstrated that reductions of optimum TE areas by 9–10% relative to deterministic optimum values was warranted in key stochastic analysis cases. Reductions in required cold-side mass flow rates may also be justified. Optimum system power output also was characterized by relatively high variability (i.e., standard deviation) resulting from stochastic input effects on the TE design optimization process. This is an important consideration when integrating the overall power system design with power management electronics and energy storage subsystems.
Skip Nav Destination
ASME 2007 Energy Sustainability Conference
July 27–30, 2007
Long Beach, California, USA
Conference Sponsors:
- Solar Energy Division and Advanced Energy Systems Division
ISBN:
0-7918-4797-7
PROCEEDINGS PAPER
Probabilistic Design and Analysis for Robust Design of Advanced Thermoelectric Conversion Systems
Terry J. Hendricks,
Terry J. Hendricks
Battelle Pacific Northwest Division, Richland, WA
Search for other works by this author on:
Naveen K. Karri
Naveen K. Karri
Battelle Pacific Northwest Division, Richland, WA
Search for other works by this author on:
Terry J. Hendricks
Battelle Pacific Northwest Division, Richland, WA
Naveen K. Karri
Battelle Pacific Northwest Division, Richland, WA
Paper No:
ES2007-36085, pp. 323-331; 9 pages
Published Online:
February 24, 2009
Citation
Hendricks, TJ, & Karri, NK. "Probabilistic Design and Analysis for Robust Design of Advanced Thermoelectric Conversion Systems." Proceedings of the ASME 2007 Energy Sustainability Conference. ASME 2007 Energy Sustainability Conference. Long Beach, California, USA. July 27–30, 2007. pp. 323-331. ASME. https://doi.org/10.1115/ES2007-36085
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Two Constructal Routes to Minimal Heat Flow Resistance via Greater Internal Complexity
J. Heat Transfer (February,1999)
Foreword
J. Eng. Gas Turbines Power (April,2013)
Free Convection Limits for Pin-Fin Cooling
J. Heat Transfer (August,1998)
Related Chapters
Hydro Tasmania — King Island Case Study
Hydro, Wave and Tidal Energy Applications
Performance-Based Expert Judgement Weighting Using Moment Methods (PSAM-0264)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Application of Modified Adaptive Tabu Search to Dynamic Economic Load Dispatch
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)