Upward heat losses have strong effect on the performance of flat plate solar collectors under different operating conditions. Suitable equations for estimation of top heat loss coefficient have already been proposed [1,2]. The top heat loss coefficient is a function of wind induced convective heat transfer coefficient in a flat plate solar collector. It is, therefore, important to choose appropriate values of this convective heat transfer coefficient for correct estimation of the top heat loss coefficient. Researchers [3–6] have suggested different wind speed based correlations for estimation of the wind induced convective heat transfer coefficient. These correlations give different values of wind heat transfer coefficient thus resulting in variation in values of the top heat loss coefficient of a solar collector under same operating conditions. In present study, an attempt has been made to measure and study the wind induced convective heat transfer coefficient from exposed flat horizontal surfaces in real wind. For this purpose, three unglazed test plates of similar construction and different sizes were employed. Experiments were conducted on the three test plates over rooftop of a building in built environment. From experimental data of the test plate, of size 925mm × 865mm × 2mm, a correlation between wind heat transfer coefficient and wind speed has been obtained by linear regression. The obtained correlation has also been compared with work of other researchers [3–6]. Results obtained from experimental data of the three test plates provide some interesting information about wind induced convective heat transfer coefficient.

This content is only available via PDF.
You do not currently have access to this content.