In order to optimize the solar field output of parabolic trough collectors (PTC) it is essential to study the influence of collector and absorber geometry on the optical performance. The optical ray-tracing model of PTC conceived for this purpose uses photogrammetrically measured concentrator geometry in commercial Monte Carlo ray tracing software. The model has been validated with measurements of a scanning flux measurement system, measuring the solar flux density distribution close to the focal line of the PTC. The tool uses fiber optics and a CCD-camera to scan the focal area of a PTC module. Since it is able to quantitatively detect spilled light with good spatial resolution it provides an evaluation of the optical efficiency of the PTC. For comparison of ray tracing predictions with measurements, both flux maps and collector geometry have been measured under identical conditions on the Eurotrough prototype collector at PSA. The validation of the model is provided by three methods: the comparison of measured intercept factors with corresponding simulations; comparison of measured flux density distributions with corresponding ray tracing predictions; and comparison of thermographically measured temperature distribution on the absorber surface with flux density distribution predicted for this surface. Examples of sensitivity studies performed with the validated model are shown.

This content is only available via PDF.
You do not currently have access to this content.