We present a simple theory of diffusive phonon heat transport in silicon thin films using the Two-Temperature Model (TTM). In silicon thin films, boundary scattering reduces the lifetime and hence, the mean free path of acoustic phonons. As acoustic phonons are responsible for heat transport in silicon, the latter effect leads to a reduction in the lattice thermal conductivity. However, optical phonons are unaffected by boundary scattering. As the boundary scattering rate exceeds the inverse lifetime of acoustic phonons and the energy relaxation rate between optical and acoustic phonons, it results in an energy transfer bottleneck. The reduced lattice thermal conductivity from boundary scattering and the energy transfer bottleneck are taken into account in the TTM. We apply the TTM to find the steady temperature distribution in a 2D model of a silicon-on-insulator (SOI) device. The numerical results are in good agreement with those obtained from the more sophisticated full dispersion model of the Boltzmann Transport Equation (BTE). We apply the TTM to calculate the steady state and transient temperature distributions in a simplified 1D model of a SOI device.
Skip Nav Destination
ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences
August 10–14, 2008
Jacksonville, Florida, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
978-0-7918-4323-9
PROCEEDINGS PAPER
A Two-Temperature Model of Narrow-Body Silicon Transistors Under Steady State and Transient Operation
Zhun-Yong Ong,
Zhun-Yong Ong
University of Illinois - Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Eric Pop
Eric Pop
University of Illinois - Urbana-Champaign, Urbana, IL
Search for other works by this author on:
Zhun-Yong Ong
University of Illinois - Urbana-Champaign, Urbana, IL
Eric Pop
University of Illinois - Urbana-Champaign, Urbana, IL
Paper No:
ENIC2008-53025, pp. 97-108; 12 pages
Published Online:
June 5, 2009
Citation
Ong, Z, & Pop, E. "A Two-Temperature Model of Narrow-Body Silicon Transistors Under Steady State and Transient Operation." Proceedings of the ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASME 2008 3rd Energy Nanotechnology International Conference. Jacksonville, Florida, USA. August 10–14, 2008. pp. 97-108. ASME. https://doi.org/10.1115/ENIC2008-53025
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
J. Heat Transfer (February,2001)
Phonon Heat Conduction in Thin Films: Impacts of Thermal Boundary Resistance and Internal Heat Generation
J. Heat Transfer (April,2001)
Related Chapters
Short-Pulse Collimated Radiation in a Participating Medium Bounded by Diffusely Reflecting Boundaries
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Study on Load Position Switching of Radial Scattering Dispenser
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Model and Simulation of Low Elevation Ground-to-Air Fading Channel
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)