Abstract

Electric multirotor aircraft with vertical-take-off-and-landing capabilities are emerging as a revolutionary transportation mode. This paper studies optimal control of a multirotor unmanned aerial vehicle based on a system-level multiphysical model. The model considers aerodynamics of the rotor-propeller assembly, electro-mechanical dynamics of the motor and motor controller, and rigid-body dynamics of the vehicle, as control based on a system-level model incorporating all these dynamics and their coupling is missing in literature. A forward flight operation is considered for time-optimal and energy-optimal control, as well as battery voltages of 25 V and 21 V. Energy-optimal control is shown to reduce the energy required for the operation by 38.5% at 25 V, while reducing the battery voltage increases the minimum operation time by 19.8%. The energy-optimal cruise velocity is also examined, demonstrating that the optimal velocity predicted without considering rotor aerodynamics uses 35.2% more energy per meter travelled than is required at the true optimal velocity.

This content is only available via PDF.
You do not currently have access to this content.