Abstract

The improper use of artificial light causing skyglow is detrimental to many types of wildlife and can potentially cause irregular human sleeping patterns. Studies have been performed to analyze light pollution on a global scale. However, light pollution data on a local scale is not of ten available and the effects at local scale have rarely been studied. Herein, a new custom-designed autonomous light assessment drone (ALAD) is described for evaluating light pollution at local scale. The ALAD is designed and equipped with a sky quality meter (SQM) to measure skyglow and a low-cost illuminance sensor to measure light from artificial sources. Outdoor field tests are performed at a remote site in central Utah and the measured results are validated against data from lightpollution-map.info. The SQM measurements are in agreement with the estimates from the light pollution map, and the initial results demonstrate feasibility of the ALAD for local-scale skyglow assessment.

This content is only available via PDF.
You do not currently have access to this content.