Modern Diesel engines have become highly complex multi-input multi-output systems. Controls of modern Diesel engines to meet various requirements such as high fuel efficiency and low NOx and particulate matter (PM) emissions, remain a great challenge for automotive control community. While model-based controls have demonstrated significant potentials in achieving high Diesel engine performance. Complete and high-fidelity control-oriented Diesel engine models are much needed as the foundations of model-based control system development. In this study, a semi-physical, mean-value control-oriented model of a turbocharged Diesel engine equipped with high-pressure exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) is developed and experimentally validated. The static calibration of Diesel engine model is achieved with the least-square optimization methodology using the experimental test data from a physical Diesel engine platform. The normalized root mean square errors (NRMSEs) of the calibration results are in the range of 0.1095 to 0.2582. The cross-validation results demonstrated that the model was capable of accurately capturing the engine torque output and NOx emissions with the control inputs of EGR, VGT and Start of Injection timing (SOI) in wide-range operating conditions.

This content is only available via PDF.
You do not currently have access to this content.