Abstract
We propose and study a motion planning algorithm for multi-agent autonomous systems to navigate through uncertain and dynamic environments. We use a receding horizon chance constraint framework that allows for tuning the trade-off between the risk of collision and the infeasibility of paths. We consider sampling-based incremental planning algorithms and extend them to the case of multiple agents and dynamic and uncertain environments. The receding horizon control framework is used to incorporate sensor measurements at a fixed interval of time to reduce uncertainty about agents’ state and environment. Our presentation focuses on rapidly-exploring random trees (RRTs) and the assumption of Gaussian noise in the uncertainty model. Our algorithm is illustrated using several examples.