This paper deals with electrostatically actuated Double-Walled Carbon Nanotubes (DWCNT) and Single-Walled Carbon Nanotubes (SWCNT) cantilever resonators. Frequency response of parametric resonance is investigated. Euler-Bernoulli cantilever beam model is used for both DWCNT and SWCNT. Electrostatic and viscous damping forces are applied on both types of resonators, DWCNT and SWCNT. In this investigation, soft AC voltage excitation is assumed. For the DWCNT, an intertube van der Waals force is present between the two concentric carbon nanotubes (CNTs), coupling their motion and acting as a nonlinear spring. The nonlinearities in the vibration are provided by the electrostatic (both SWCNT and DWCNT) and intertube van der Waals forces (DWCNT). The Method of Multiple Scales (MMS) is a perturbation method that provides uniformly valid approximations for weakly nonlinear systems. A Reduced-Order-Model (ROM) is developed and numerically solved using AUTO-07P (bifurcation and continuation software). Since large tip deflections are investigated in this paper, only coaxial vibration of the DWCNT is considered. Parametric resonance is investigated, as well as the influences of damping and voltage. Lastly, the effect of intertube van der Waals force on the bifurcation and stability of the DWCNT is reported.

This content is only available via PDF.
You do not currently have access to this content.