This paper presents experimental and numerical analyses of a vibrating sandwich beam with a tip mass. The mathematical formulation is based on higher order sandwich panel theory (HSAPT) and the governing equations of motion and boundary conditions are obtained using Hamilton’s principle. General Differential Quadrature (GDQ) is employed to solve the system governing equations of motion. Experiments are carried out to validate the proposed formulation and the results show very good agreement. Parametric studies are conducted to investigate the influence of key design parameters on the natural frequency and vibration response of the system.

This content is only available via PDF.
You do not currently have access to this content.