Anyone who has ever used a chalkboard is probably familiar with the phenomenon of “chalk hopping,” where the chalk unexpectedly skips across the chalkboard, leaving a dotted line in its wake. Such behavior is ubiquitous to mechanical systems with moving parts in contact, where it is almost always undesirable. It is widely believed that hopping behavior is a physical manifestation of either the classical Painlevé paradox or a related phenomenon called dynamical jam. The present paper poses the question of whether chalk hopping might be caused by a different, and much more recently discovered, instability called “reverse chatter,” in which two bodies initially in sustained contact can lose contact through a sequence of impacts with increasing amplitude. Previous simulations of reverse chatter have considered only constant external loads, which do not adequately model the forces exerted on a piece of chalk. The current work presents simulation results for a model system in the presence of a control algorithm that mimics the human hand by attempting to keep the chalk in contact with the chalkboard. The simulations reveal that there exist physically realistic parameter values for which a loss of contact occurs that cannot be attributed to either the classical Painlevé paradox or dynamical jam, but which can only be attributed to reverse chatter. Furthermore, the subsequent motion of the system after losing contact is found to be strikingly similar to that of chalk hopping on a chalkboard, to a hitherto unparalleled degree. These results show that neither the classical Painlevé paradox nor dynamical jam is necessary for hopping behavior, and suggest that reverse chatter may be the most plausible explanation for chalk hopping.
Skip Nav Destination
ASME 2018 Dynamic Systems and Control Conference
September 30–October 3, 2018
Atlanta, Georgia, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
978-0-7918-5191-3
PROCEEDINGS PAPER
Could Chalk Hopping Be Caused by Reverse Chatter?
John W. Sanders
John W. Sanders
California State University, Fullerton, Fullerton, CA
Search for other works by this author on:
John W. Sanders
California State University, Fullerton, Fullerton, CA
Paper No:
DSCC2018-8906, V003T39A001; 14 pages
Published Online:
November 12, 2018
Citation
Sanders, JW. "Could Chalk Hopping Be Caused by Reverse Chatter?." Proceedings of the ASME 2018 Dynamic Systems and Control Conference. Volume 3: Modeling and Validation; Multi-Agent and Networked Systems; Path Planning and Motion Control; Tracking Control Systems; Unmanned Aerial Vehicles (UAVs) and Application; Unmanned Ground and Aerial Vehicles; Vibration in Mechanical Systems; Vibrations and Control of Systems; Vibrations: Modeling, Analysis, and Control. Atlanta, Georgia, USA. September 30–October 3, 2018. V003T39A001. ASME. https://doi.org/10.1115/DSCC2018-8906
Download citation file:
30
Views
Related Proceedings Papers
Related Articles
Modelling Machining Dynamics Including Damping in the Tool-Workpiece Interface
J. Eng. Ind (November,1994)
Optimizing Aircraft Performance With Adaptive, Integrated Flight/Propulsion Control
J. Eng. Gas Turbines Power (January,1991)
Analysis and Modifications of Turbulence Models for Wind Turbine Wake Simulations in Atmospheric Boundary Layers
J. Sol. Energy Eng (June,2018)
Related Chapters
TBDT: A New Trust-Based DDoS-Tolerant
International Conference on Electronics, Information and Communication Engineering (EICE 2012)
The Electronic Blackboard Based on Microencapsulated Electrophoretic Display
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Supporting Systems/Foundations
Handbook on Stiffness & Damping in Mechanical Design