In this paper, we propose a trust-based runtime verification (RV) framework for deploying multiple quad-rotors with a human-in-the-loop (HIL). By bringing together approaches from runtime verification, trust-based decision-making, human-robot interaction (HRI), and hybrid systems, we develop a unified framework that is capable of integrating human cognitive skills with autonomous capabilities of multi-robot systems to improve system performance and maximize the intuitiveness of the human-robot-interaction. On top of the RV framework, we utilize a probabilistic trust inference model as the key component in forming the HRI, designed to maintain the system performance. A violation avoidance controller is designed to account for the unexpected/unmodeled environment behaviors e.g. collision with static/moving obstacles. We also use the automata theoretic approaches to generate motion plans for the quad-rotors working in a partially-known environment by automatic synthesis of controllers enforcing specifications given in temporal logic languages. Finally, we illustrated the effectiveness of this framework as well as its feasibility through a simulated case study.

This content is only available via PDF.
You do not currently have access to this content.