Lithium-ion battery cycle- and calendar-life remain to be one of the greatest uncertainties for the advanced energy storage systems. Accurate characterization of battery aging has been crucial for battery state-of-health (SOH) estimation and the remaining useful life (RUL) prediction. The formation-and-growth of the solid-electrolyte interphase (SEI) has been widely recognized as one of the most prominent battery degradation mechanisms. It consumes the cyclable lithium within the cell and ultimately leads to the capacity fade which cannot be measured directly onboard. This study evaluates the multi-scale multi-physics battery models and their respective aging mechanisms as well as the corresponding characterization metrics. Then the reduced order single particle model (SPM) is selected in this study, given its parametric dependence on both electrochemical and physical parameters as well as its compatibility to the available measurements in vehicle for aging characterization. nLi, the total moles of cyclable lithium within the cell, is identified as a valid aging parameter that can effectively characterize the capacity fade through the interpretation of experimental aging data. This study also investigates into the potentially optimal testing profile and the sufficient amount of data required for the accurate aging characterization. Then the method of brute force nearest neighbor search (NNS) is applied to derive the long-term evolution trend of the aging parameter nLi, which can serve as a key benchmark for validating the in-vehicle implementable algorithms for battery state-of-health (SOH) estimation and as an important foundation for predicting the remaining useful life (RUL) of battery.
Skip Nav Destination
ASME 2018 Dynamic Systems and Control Conference
September 30–October 3, 2018
Atlanta, Georgia, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
978-0-7918-5191-3
PROCEEDINGS PAPER
Electrochemical Model-Based Aging Characterization of Lithium-Ion Battery Cell in Electrified Vehicles
Meng Huang,
Meng Huang
Ohio State University, Columbus, OH
Search for other works by this author on:
Mrinal Kumar
Mrinal Kumar
Ohio State University, Columbus, OH
Search for other works by this author on:
Meng Huang
Ohio State University, Columbus, OH
Mrinal Kumar
Ohio State University, Columbus, OH
Paper No:
DSCC2018-8947, V003T29A002; 10 pages
Published Online:
November 12, 2018
Citation
Huang, M, & Kumar, M. "Electrochemical Model-Based Aging Characterization of Lithium-Ion Battery Cell in Electrified Vehicles." Proceedings of the ASME 2018 Dynamic Systems and Control Conference. Volume 3: Modeling and Validation; Multi-Agent and Networked Systems; Path Planning and Motion Control; Tracking Control Systems; Unmanned Aerial Vehicles (UAVs) and Application; Unmanned Ground and Aerial Vehicles; Vibration in Mechanical Systems; Vibrations and Control of Systems; Vibrations: Modeling, Analysis, and Control. Atlanta, Georgia, USA. September 30–October 3, 2018. V003T29A002. ASME. https://doi.org/10.1115/DSCC2018-8947
Download citation file:
71
Views
Related Proceedings Papers
Related Articles
Aging Effect–Aware Finite Element Model and Parameter Identification Method of Lithium-Ion Battery
J. Electrochem. En. Conv. Stor (August,2023)
Aging Mechanisms and Thermal Characteristics of Commercial 18650 Lithium-Ion Battery Induced by Minor Mechanical Deformation
J. Electrochem. En. Conv. Stor (May,2021)
Control-Oriented Modeling of Lithium-Ion Batteries
J. Dyn. Sys., Meas., Control (February,2021)
Related Chapters
Concluding Remarks and Future Work
Ultrasonic Welding of Lithium-Ion Batteries
Hydro Tasmania — King Island Case Study
Hydro, Wave and Tidal Energy Applications
Defining Joint Quality Using Weld Attributes
Ultrasonic Welding of Lithium-Ion Batteries