An economic model predictive control framework is presented in this study for an integrated wind turbine and flywheel energy storage system. The control objective is to smooth wind power output and mitigate tower fatigue load. The optimal control problem within the model predictive control framework has been formulated as a convex optimal control problem with linear dynamics and convex constraints that can be solved globally. The performance of the proposed control algorithm is compared to that of a standard wind turbine controller. The effect of the proposed control actions on the fatigue loads acting on the tower and blades is studied. The simulation results, with various wind scenarios, showed the ability of the proposed control algorithm to achieve the aforementioned objectives in terms of smoothing output power and mitigating tower fatigue load at the cost of a minimal reduction of the wind energy harvested.
- Dynamic Systems and Control Division
An Economic Model Predictive Control Approach for Wind Power Smoothing and Tower Load Mitigation
Alhneaish, MM, Shaltout, ML, & Metwalli, SM. "An Economic Model Predictive Control Approach for Wind Power Smoothing and Tower Load Mitigation." Proceedings of the ASME 2018 Dynamic Systems and Control Conference. Volume 2: Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems. Atlanta, Georgia, USA. September 30–October 3, 2018. V002T28A001. ASME. https://doi.org/10.1115/DSCC2018-9032
Download citation file: