Passive selective catalytic reduction (SCR) has emerged as a promising NOx reduction technology for highly-efficient lean-burn gasoline engines to meet stringent NOx emission regulation in a cost-effective manner. In this study, a prototype passive SCR which includes an upstream three-way catalyst (TWC) with added NOx storage component, and a downstream urealess SCR catalyst, was investigated. Engine experiments were conducted to investigate and quantify the dynamic NOx storage/release behaviors as well as dynamic NH3 generation behavior on the new TWC with added NOx storage component. Then, the lean/rich mode-switching timing control was optimized to minimize the fuel penalty associated with passive SCR operation. Simulation results show that, compared to the baseline mode-switching timing control, the optimized control can reduce the passive SCR-related fuel penalty by 6.7%. Such an optimized mode-switching timing control strategy is rather instrumental in realizing significant fuel efficiency benefits for lean-burn gasoline engines coupled with cost-effective passive SCR systems.
- Dynamic Systems and Control Division
Optimization of Mode Switching Timing Control for a Lean-Burn Gasoline Engine With a Prototype Passive SCR System
Strange, D, Chen, P, Prikhodko, VY, & Parks, JE. "Optimization of Mode Switching Timing Control for a Lean-Burn Gasoline Engine With a Prototype Passive SCR System." Proceedings of the ASME 2018 Dynamic Systems and Control Conference. Volume 2: Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems. Atlanta, Georgia, USA. September 30–October 3, 2018. V002T27A005. ASME. https://doi.org/10.1115/DSCC2018-9062
Download citation file: