The configuration and control of aftertreatment systems have a significant impact on their functionalities and emission control performance. The traditional aftertreatment system configurations, i.e., connections from one aftertreatment subsystem to another subsystem in series, are simple but generally do not yield the optimal aftertreatment system performance. New aftertreatment configurations, in conjunction with new engine and aftertreatment control, can significantly improve engine efficiency and emission reduction performance. However, new configuration design requires human intuition and in-depth knowledge of engine and aftertreatment system design and control. The purpose of this study is to develop a general systematic and computationally-efficient method which enables automated and simultaneous optimization of passive selective catalytic reduction (SCR) system architectures and the associated non-uniform cylinder-to-cylinder combustion (NUCCC) controls based on a newly proposed highly reconfigurable passive SCR model structure and integer partition theory. The proposed method is general enough to account for passive SCR systems with two or more TWC stages. We demonstrate through this case study that the optimized passive SCR configuration, in conjunction with the optimized NUCCC control, can reduce the NH3 specific fuel consumption by up to 21.90%.

This content is only available via PDF.
You do not currently have access to this content.