From engine controls’ perspective, understanding autoignition dynamics is a key to enabling new combustion modes for internal combustion engines, especially for renewable fuels. Conventional autoignition investigations of fuels commonly involve a rapid compression of oxidizer-fuel mixture to a desired set of temperature-pressure conditions in a rapid compression machine (RCM), and subsequent measurement of the ignition delay. However, even for relatively close thermal states at the compressed condition, different thermodynamic paths (pressure-temperature histories) may lead to significantly different chemical kinetic states and hence significantly different ignition delay measurements. Currently, there exists no systematic method to study this path dependence of auto-ignition.

In this work we present, for the first time, a systematic framework for investigation of the effect of small perturbations in the thermo-kinetic states, caused by perturbing the thermodynamic path of compression, on the ignition delay of fuels from a dynamical systems perspective. First, we introduce a novel controlled trajectory rapid compression and expansion machine (CT-RCEM) which offers the ability to precisely control the piston trajectory during compression of the fuel-oxidizer mixture, allowing the thermodynamic path to be tailored as desired. We use the CT-RCEM to experimentally investigate the influence of compression trajectory perturbation on the ignition delay of a specific fuel — dimethyl-ether (DME). Next, using a reduced order model of the combustion dynamics in the CT-RCEM that we developed, we investigate the evolution of the perturbation in the thermo-kinetic states resulting from trajectory perturbation to explain the experimental observations. Finally, we show that the sensitivity of auto-ignition to the thermodynamic path perturbation essentially arises from changes in the chemical reaction rates due to different amounts of intermediate species buildup for different thermodynamic paths.

This content is only available via PDF.
You do not currently have access to this content.