With increasingly demanding regulations on engine emission and fuel efficiency, the optimization of the internal combustion engine and the after-treatment integrated system has become a critical research focus. To address such an issue, this paper aims to achieve a better trade-off between the fuel consumption of a spark-ignited (SI) engine and emission conversion efficiencies of a Three-Way Catalytic converter (TWC) system. A Model Predictive Control (MPC)-based integrated engine and TWC control methodology is presented, which is able to optimize Air/Fuel Ratio (AFR) to maintain oxygen storage of TWC at a desired level and thus meet the tailpipe NOx, CO and HC emission requirements. The effectiveness of the presented control methodology is validated in simulation. Compared with the existing dithering-based AFR control, the proposed MPC-based AFR control can improve CO emission conversion efficiencies by 8.42% and 4.85% in simplified US06 and UDDS driving cycles, respectively. At the same time, Nitrogen Oxides (NOx) conversion efficiency maintains above the required limit of 95% and the fuel efficiency remains at the same level as the existing control methodology in production as well. Such an integrated engine-aftertreatment system control can be instrumental in improving engine efficiency and emission reduction performance.

This content is only available via PDF.
You do not currently have access to this content.