Haptic shared control is expected to achieve a smooth collaboration between humans and automated systems, because haptics facilitate mutual communication. This paper addresses a the interaction between the human driver and automation system in a haptic shared control framework using a non-cooperative model predictive game approach. In particular, we focused on a scenario in which both human and automation system detect an obstacle but select different paths for avoiding it. For such a scenario, the open-loop Nash steering control solution is derived and the influence of the human driver’s impedance and path following weights on the vehicle trajectory are investigated. It is shown that by modulating the impedance and the path following weight the control authority can be shifted between the human driver and the automation system.
- Dynamic Systems and Control Division
Game Theoretic Modeling of a Steering Operation in a Haptic Shared Control Framework
Ghasemi, AH. "Game Theoretic Modeling of a Steering Operation in a Haptic Shared Control Framework." Proceedings of the ASME 2018 Dynamic Systems and Control Conference. Volume 2: Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems. Atlanta, Georgia, USA. September 30–October 3, 2018. V002T22A003. ASME. https://doi.org/10.1115/DSCC2018-9105
Download citation file: