Advanced Driver Assistance Systems (ADAS) and autonomous driving systems are being enhanced to deal with various types of collision avoidance use-case scenarios. To handle those complicated scenarios, a unified two-dimensional planar motion control methodology assuming virtual repulsive force from obstacles is introduced, which is physically interpretable and comprehensible. The direction and magnitude of virtual repulsive force are determined considering the orientation of obstacle surface planes and the friction limit between tires and road surface respectively. Applying the concept of virtual repulsive force field, the collision avoidance path can be derived from geometrical relationship and the control activation points can be obtained as algebraic solutions.

By using a simple particle mass model, the formulation for path and control activation point is described. The simulation is conducted against not only in the case of a straight roadway but also in the case of a curve roadway. By designing feedforward and feedback controllers based on a two-wheel vehicle dynamics model, the effectiveness of the proposed method is verified and the feasibility of controller implementation for actual vehicle is also investigated.

This content is only available via PDF.
You do not currently have access to this content.