Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.

This content is only available via PDF.
You do not currently have access to this content.