Modulating the closed-loop transmission of energy in a wide frequency band without sacrificing overall system performance is a fundamental issue in a wide range of applications from precision control, active noise cancellation, to energy guiding. This paper introduces a loop-shaping approach to create such wideband closed-loop behaviors, with a particular focus on systems with nonminimum-phase zeros. Pioneering an integration of the interpolation theory with a model-based parameterization of the closed loop, the work proposes a filter design that matches the inverse plant dynamics locally and creates a framework to shape energy transmission with user defined performance metrics in the frequency domain. Application to laser-based powder bed fusion additive manufacturing validates the feasibility to compensate wide-band vibrations and to flexibly control system performance at other frequencies.

This content is only available via PDF.
You do not currently have access to this content.