Fully automatic parking (FAP) is a key step towards the age of autonomous vehicle. Motivated by the contribution of human vision to human parking, in this paper, we propose a computer vision based FAP method for the autonomous vehicles. Based on the input images from a rear camera on the vehicle, a convolutional neural network (CNN) is trained to automatically output the steering and velocity commands for the vehicle controlling. The CNN is trained by Caffe deep learning framework. A 1/10th autonomous vehicle research platform (1/10-SAVRP), which configured with a vehicle controller unit, an automated driving processor, and a rear camera, is used for demonstrating the parking maneuver. The experimental results suggested that the proposed approach enabled the vehicle to gain the ability of parking independently without human input in different driving settings.

This content is only available via PDF.
You do not currently have access to this content.