This paper presents a grasp prediction algorithm designed to govern the motion of an exoskeletal glove in rehabilitative and assistive applications. Recent research into the dynamics of hand motion has shown that the complex motion of the finger joints can be represented as a smaller set of coordinated motions or latent variables. This fact forms the basis of the proposed algorithm capable of successful prediction even with noisy data. From relatively small motion (minute user hand movements) as the input, the developed algorithm can predict intended grasp configurations. The 16 finger joint angles, with random noise, are mapped onto a set of six latent variables for which the estimated noise and future configuration are simultaneously determined using a linear regression. The algorithm was tested in simulation on published motion data from 30 healthy subjects performing a set of common grasps on multiple objects. The algorithm was able to determine the target state with an accuracy of approximately 90% for each subject, despite the nonlinear motion and non-uniform trajectory variations. We propose that the predicted grasp is an adequate target for an exoskeletal glove to provide initial gross movement for the user, then iteratively converge to the desired grasp with only limited additional user input.
Skip Nav Destination
ASME 2018 Dynamic Systems and Control Conference
September 30–October 3, 2018
Atlanta, Georgia, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
978-0-7918-5189-0
PROCEEDINGS PAPER
Latent Variable Grasp Prediction for Exoskeletal Glove Control
Raghuraj J. Chauhan,
Raghuraj J. Chauhan
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Pinhas Ben-Tzvi
Pinhas Ben-Tzvi
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Raghuraj J. Chauhan
Virginia Tech, Blacksburg, VA
Pinhas Ben-Tzvi
Virginia Tech, Blacksburg, VA
Paper No:
DSCC2018-8978, V001T07A002; 7 pages
Published Online:
November 12, 2018
Citation
Chauhan, RJ, & Ben-Tzvi, P. "Latent Variable Grasp Prediction for Exoskeletal Glove Control." Proceedings of the ASME 2018 Dynamic Systems and Control Conference. Volume 1: Advances in Control Design Methods; Advances in Nonlinear Control; Advances in Robotics; Assistive and Rehabilitation Robotics; Automotive Dynamics and Emerging Powertrain Technologies; Automotive Systems; Bio Engineering Applications; Bio-Mechatronics and Physical Human Robot Interaction; Biomedical and Neural Systems; Biomedical and Neural Systems Modeling, Diagnostics, and Healthcare. Atlanta, Georgia, USA. September 30–October 3, 2018. V001T07A002. ASME. https://doi.org/10.1115/DSCC2018-8978
Download citation file:
43
Views
Related Proceedings Papers
Related Articles
What Observables Are Needed for Precision Data-Enabled Learning of Inverse Operators?
J. Dyn. Sys., Meas., Control (May,2024)
Inertial Parameter Identification for Closed-Loop Mechanisms: Adaptation of Linear Regression for Coordinate Partitioning
J. Comput. Nonlinear Dynam (May,2024)
Autonomous Satellite Servicing Infrastructure for In-Space Assembly and Manufacturing
J. Manuf. Sci. Eng (December,2024)
Related Chapters
The Simulation of Lunar Exploration and Image Transmission
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)
Motion Prediction with Gaussian Process Dynamical Models
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
Discovering Similar Segments by Time-Parameterized Trajectory Clustering
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3