In this paper, we present an online approach for optimizing the 3D layout of an ocean current turbine (OCT) array. Unlike towered turbines, most OCT concepts for Gulf Stream energy harvesting involve tethered systems. The replacement of towers with tethers provides the opportunity for OCTs to adjust their locations within some domain by paying out/in tether to adjust depth and manipulating control surfaces (elevators and rudders) to adjust longitudinal and lateral positions. The ability to adjust the OCT positions online provides the capacity to reconfigure the array layout in response to changing flow conditions; however, successful online array layout reconfiguration requires optimization schemes that are not only effective but also enable fast convergence to the optimal configuration. To address the above needs, we present a reconfigurable layout optimization algorithm with two novel features. First, we describe the location of each turbine through a small set of basis parameters; the number of basis parameters does not grow with increasing array size, thereby leading to an optimization that is not only computationally tractable but is also highly scalable. Secondly, we use Bayesian Optimization to optimize these basis parameters. Bayesian Optimization is a very powerful iterative optimization technique that, at every iteration, fuses a best-guess model of a complex function (array power as a function of basis parameters, in our case) with a characterization of the model uncertainty in order to determine the next evaluation point. Using a low-order analytical wake interaction model, we demonstrate the effectiveness of the proposed optimization approach for various array sizes.
- Dynamic Systems and Control Division
Iterative In-Situ 3D Layout Optimization of a Reconfigurable Ocean Current Turbine Array Using Bayesian Optimization Available to Purchase
Baheri, A, Ramaprabhu, P, & Vermillion, C. "Iterative In-Situ 3D Layout Optimization of a Reconfigurable Ocean Current Turbine Array Using Bayesian Optimization." Proceedings of the ASME 2017 Dynamic Systems and Control Conference. Volume 3: Vibration in Mechanical Systems; Modeling and Validation; Dynamic Systems and Control Education; Vibrations and Control of Systems; Modeling and Estimation for Vehicle Safety and Integrity; Modeling and Control of IC Engines and Aftertreatment Systems; Unmanned Aerial Vehicles (UAVs) and Their Applications; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Control of Smart Buildings and Microgrids; Energy Systems. Tysons, Virginia, USA. October 11–13, 2017. V003T40A002. ASME. https://doi.org/10.1115/DSCC2017-5230
Download citation file: