This paper investigates the dynamics governing the behavior of electrostatically actuated MEMS cantilever resonators. The cantilever is held parallel to a ground plate (electrode) with an AC voltage between the plate and the electrode causing the electrostatic actuation (excitation). For the purposes of this paper this is soft excitation. The frequency of the excitation is near the natural frequency of the cantilever leading to what is known as parametric resonance. The electrostatic force in the problem investigated throughout the paper is nonlinear in nature and includes the fringe effect. Two methods are used in investigating this problem: the method of multiple scales (MMS) and the homotopy perturbation method (HPM). The two methods work well for small non-linearities and small amplitudes. The influence of voltage, fringe, damping, Casimir, and Van der Waals parameters will be investigated in this paper using MMS and HPM as a means of verifying the results obtained.

This content is only available via PDF.
You do not currently have access to this content.