It is difficult for crane operators to lift and maneuver payloads without causing significant, uncontrolled motion. Consequently, research in the area of crane operation has focused on designing controllers to minimize payload swing. However, lifting long and slender payloads (e.g., steel I-beams) from a non-level surface (e.g., like many outdoor construction sites) has not been addressed in much detail. This paper evaluates the amplitude of residual swing and robustness of two different control methodologies while hoisting a slender payload up into the air from an inclined surface. A semi-automatic approach, where the crane operator controls the lift direction and a proportional-integral-derivative (PID) controller adjusts the overhead trolley position, was developed. Experimental tests demonstrate that this method reduces the peak amplitude of residual vibration by about 80% for most non-zero incline angles.

This content is only available via PDF.
You do not currently have access to this content.