There are many types of systems in both nature and technology that exhibit limit cycles under periodic forcing. Sometimes, especially in swimming robots, such forcing is used to propel a body forward in a plane. Due to the complexity in studying a fluid system it is often useful to investigate the dynamics of an analogous land model. Such analysis can then be useful in gaining insight about and controlling the original fluid system. In this paper we investigate the behavior of the Chaplygin sleigh under the effect of viscous dissipation and sinusoidal forcing. This is shown to behave in a similar manner as certain robotic fish models. We then apply limit cycle analysis techniques to predict the behavior and control the net translational velocity of the sleigh in a horizontal plane.

This content is only available via PDF.
You do not currently have access to this content.