As a precursor to capsize, marginal stability, resulting from incorrect loading conditions and crew negligence, poses a serious danger to ships. Therefore, as a benchmark problem for preventing capsize, the use of an actively controlled pendulum for the stabilization of a marginally stable ship was analyzed. Lyapunov stability criteria and closed loop eigenvalues were used to evaluate the extent to which a proposed pendulum controller could cope with different ship stability conditions. Equations of motion were solved to observe the controller’s performance under different damping conditions. The behavior of the controller yielded the following results: a marginally stable ship can be stabilized, as long as there is no right hand plane zero; energy dissipation is key to the stabilization of a marginally stable ship; the controller must have knowledge of the ship’s stability to prevent controller-induced excitation; and a stabilized tilted ship is more robust to external disturbances than a stabilized upright ship.

This content is only available via PDF.
You do not currently have access to this content.