The tracking performance of a robot manipulator is controlled using nonlinear active disturbance rejection control (ADRC). The proposed method does not require the complete knowledge of the plant’s parameters, and external disturbances since it is based on the rejection and estimation of the unknown internal dynamics and external disturbances. The proposed method is simple and has minimal tuning parameters. The robustness of the proposed method is discussed against parameter uncertainties and disturbances. First, the mathematical model of the manipulator is developed. ADRC theory is explained. The manipulator is represented in ADRC form. ADRC’s tracking performance for the joints and end-effector is compared to the tracking performance of the robust passivity (RP) control. The simulations prove that the proposed control method achieves good tracking performance compared to RP control. It is shown that ADRC has a lower energy consumption compared to RP control by calculating the power in the input signals.

This content is only available via PDF.
You do not currently have access to this content.