The ability to track a trajectory without significant error is a vital requirement for mobile robots. Numerous methods have been proposed to mitigate tracking error. While these trajectory-tracking methods are efficient for rigid systems, many excite unwanted vibration when applied to flexible systems, leading to tracking error. This paper analyzes a modification of input shaping, which has been primarily used to limit residual vibration for point-to-point motion of flexible systems. Standard input shaping is modified using error-limiting constraints to reduce transient tracking error for the duration of the system’s motion. This method is simulated with trajectory inputs constructed using line segments and Catmull-Rom splines. Error-limiting commands are shown to improve both spatial and temporal tracking performance and can be made robust to modeling errors in natural frequency.

This content is only available via PDF.
You do not currently have access to this content.