An active suspension based on Linear Quadratic Gaussian (LQG) optimal controller is an effective system for enhancing the ride comfort and handling characteristics of a vehicle. LQG requires a good plant model for success, and this may be difficult to extract using a single inertial measurement device in the presence of noise. This paper presents a method for estimating the vehicle states by measuring both the vehicle bounce and pitch accelerations using an Inertial Measurement Unit (IMU) with position uncertainty relative to the sprung mass center of gravity. Frequency domain methods are used for System Identification (SysId). The state estimation is based on channel-by-channel model estimation using uncorrelated random excitation which is applied to the front wheels, rear wheels, front actuator, and rear actuator. An anti-aliasing filter eliminates false response harmonics and a Kalman filter is used to estimate the current states of the actual plant and the LQR block for the full-states-feedback controller. The controllers and observer are implemented in simulation using a four degree-of-freedom half car linear model.
- Dynamic Systems and Control Division
System Identification and Optimal Control of Half-Car Active Suspension System Using a Single Noisy IMU With Position Uncertainty
Attia, T, Kochersberger, K, Bird, J, & Southward, SC. "System Identification and Optimal Control of Half-Car Active Suspension System Using a Single Noisy IMU With Position Uncertainty." Proceedings of the ASME 2017 Dynamic Systems and Control Conference. Volume 2: Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications. Tysons, Virginia, USA. October 11–13, 2017. V002T04A002. ASME. https://doi.org/10.1115/DSCC2017-5097
Download citation file: