An analytical method is used to develop a model to calculate steady-state eddy-current damping effects in two configurations of magnetic levitation (maglev) systems. The eddy-current based force (eddy-current force) is used for high precision positioning of a levitated permanent magnet in maglev systems. In these systems, the motion of the levitated permanent magnet and changes of the coil’s currents, generate eddy current in the conductors. The proposed analytical model is used to calculate both effects. A conductive cylindrical shell around the levitated object is implemented as a new technique to generate eddy currents in maglev systems. The model is also employed to obtain eddy-current damping effects in a system with a conductive plate beneath the levitated object. The analytical models match results from high fidelity finite element analysis (FEA) with acceptable accuracy in a wide range of operations. Advantages of the two configurations are discussed.

This content is only available via PDF.
You do not currently have access to this content.