The brain is a highly complex network and analyzing brain connectivity is a nontrivial task. Consequently, the neuroscience community created a large-scale, customizable, mathematical model which simulates brain activity called The Virtual Brain (TVB). Using TVB, we seek to control electroencephalography (EEG) measured brain states using auditory inputs, through TVB. A safe non-invasive brain stimulation method is binaural beats (BB) which arise from the brain’s interpretation of two pure tones, with a small frequency mismatch, delivered independently to each ear. A third phantom BB, whose frequency is equal to the difference of the two presented tones, is produced. This paper details the development and proof-of-concept testing of a simulation environment for an EEG-based closed-loop control of TVB using BB. Results suggest that the connectivity networks, constructed from simulated EEG, may change with certain BB stimulation frequency. In this work, we demonstrate that a linear controller can successfully modulate TVB connectivity.
- Dynamic Systems and Control Division
Closed-Loop Control of the Frequency Response of the Virtual Brain Model Available to Purchase
Beauchene, C, Leonessa, A, Roy, S, Simon, J, & Abaid, N. "Closed-Loop Control of the Frequency Response of the Virtual Brain Model." Proceedings of the ASME 2017 Dynamic Systems and Control Conference. Volume 1: Aerospace Applications; Advances in Control Design Methods; Bio Engineering Applications; Advances in Non-Linear Control; Adaptive and Intelligent Systems Control; Advances in Wind Energy Systems; Advances in Robotics; Assistive and Rehabilitation Robotics; Biomedical and Neural Systems Modeling, Diagnostics, and Control; Bio-Mechatronics and Physical Human Robot; Advanced Driver Assistance Systems and Autonomous Vehicles; Automotive Systems. Tysons, Virginia, USA. October 11–13, 2017. V001T37A001. ASME. https://doi.org/10.1115/DSCC2017-5117
Download citation file: