This paper presents an unmanned ground vehicle for use in outdoor environments. The vehicle features a two-bodied design in which the two bodies can rotate relative to each other about a fixed axis. The vehicle uses tracked locomotion for performance in rugged environments and a linear actuator for control of the bodys’ relative orientation. A spring-damper is used to mitigate vibrations due to surface conditions that would add noise to the sensors. A nonlinear model for the vehicle is introduced, and linearized. Design considerations of the suspension system are discussed, including the reduction of vibrations and the maximization of contact forces. Finally, the vehicle dynamics are simulated for the linear and nonlinear models, and the effectiveness and computation time of the two are compared.

This content is only available via PDF.
You do not currently have access to this content.