Approximately 1.5 million senior citizens live under nursing supervision, and most require assistance with at least one or more Activities of Daily Living (ADL). These include transferring in and out of chairs, beds and toilets, which necessitates the ability to perform sit-to-stand transitions. The sit-to-stand transition is a complex full-body activity that requires the synergistic coordination of the upper and lower limbs and trunk. This paper presents a model-based control approach for an exoskeleton device that can provide assistance at the ankle, knee, and hip joints. Validation of the controller is based on simulations on a four-link model of the human body. The results show that the control strategy is successful for different sit-to-stand transition speeds, and when the user is providing only a part of the required torques or has a single weak joint. The results also demonstrate the effectiveness of the proposed control strategy in the presence of modeling error that provides further support for the robustness of this approach.
- Dynamic Systems and Control Division
Control Strategy for an Assistive Exoskeleton for Sit-to-Stand Transition Available to Purchase
Patil, G, Rigoli, LM, Chamnikar, A, Miller, A, Ralescu, A, Kiefer, AW, Richardson, MJ, Lorenz, T, & Kumar, M. "Control Strategy for an Assistive Exoskeleton for Sit-to-Stand Transition." Proceedings of the ASME 2017 Dynamic Systems and Control Conference. Volume 1: Aerospace Applications; Advances in Control Design Methods; Bio Engineering Applications; Advances in Non-Linear Control; Adaptive and Intelligent Systems Control; Advances in Wind Energy Systems; Advances in Robotics; Assistive and Rehabilitation Robotics; Biomedical and Neural Systems Modeling, Diagnostics, and Control; Bio-Mechatronics and Physical Human Robot; Advanced Driver Assistance Systems and Autonomous Vehicles; Automotive Systems. Tysons, Virginia, USA. October 11–13, 2017. V001T30A005. ASME. https://doi.org/10.1115/DSCC2017-5163
Download citation file: