Accurate on-board capacity estimation is of critical importance in lithium-ion battery applications. Battery charging/discharging often occurs under a constant current load, and hence voltage vs. time measurements under this condition may be accessible in practice. This paper presents a novel diagnostic technique, Gaussian Process regression for In-situ Capacity Estimation (GP-ICE), which is capable of estimating the battery capacity using voltage vs. time measurements over short periods of galvanostatic operation.

The approach uses Gaussian process regression to map from voltage values at a selection of uniformly distributed times, to cell capacity. Unlike previous works, GP-ICE does not rely on interpreting the voltage-time data through the lens of Incremental Capacity (IC) or Differential Voltage (DV) analysis. This overcomes both the need to differentiate the voltage-time data (a process which amplifies measurement noise), and the requirement that the range of voltage measurements encompasses the peaks in the IC/DV curves. Rather, GP-ICE gives insight into which portions of the voltage range are most informative about the capacity for a particular cell. We apply GP-ICE to a dataset of 8 cells, which were aged by repeated application of an ARTEMIS urban drive cycle. Within certain voltage ranges, as little as 10 seconds of charge data is sufficient to enable capacity estimates with ∼ 2% RMSE.

This content is only available via PDF.
You do not currently have access to this content.