This article presents a concept of test section for a closed-return wind tunnel, where the lift force of an airfoil, which depends on the angle of attack, is controlled in real-time. This airfoil is used to represent a wind turbine blade. The lift force of the blades is what produces the rotor torque of the wind turbine. This torque determines the amount of energy that will be captured by the wind turbine. The linear dynamics of the motor used to change the angle of attack and the static non-linearity of the airfoil are modeled as a Wiener model. The Quadratic Dynamic Matrix Controller based on Wiener model with linearizing pre-compensation is implemented to keep the lift force constant, which is desirable to avoid mechanical loads for wind turbine applications.
- Dynamic Systems and Control Division
Design of a Wind Tunnel Test Section for Single Airfoil Configuration With Real-Time Lift Force Control
Aguiar da Franca, A, & Abel, D. "Design of a Wind Tunnel Test Section for Single Airfoil Configuration With Real-Time Lift Force Control." Proceedings of the ASME 2017 Dynamic Systems and Control Conference. Volume 1: Aerospace Applications; Advances in Control Design Methods; Bio Engineering Applications; Advances in Non-Linear Control; Adaptive and Intelligent Systems Control; Advances in Wind Energy Systems; Advances in Robotics; Assistive and Rehabilitation Robotics; Biomedical and Neural Systems Modeling, Diagnostics, and Control; Bio-Mechatronics and Physical Human Robot; Advanced Driver Assistance Systems and Autonomous Vehicles; Automotive Systems. Tysons, Virginia, USA. October 11–13, 2017. V001T25A004. ASME. https://doi.org/10.1115/DSCC2017-5087
Download citation file: