A non-linear control of a tilt-rotor quadcopter using sliding mode technique is presented in this paper. The tilt-rotor quadcopters are a novel class of quadcopters with a servo motor installed on each arm that enables the quadcopter’s rotors to tilt to a particular angle. Using these additional tilt angles, this type of a quadcopter can be used to achieve desired trajectories with faster maneuvering and can handle external disturbances better than a conventional quadcopter. In this paper, sliding mode control technique is utilized for the pitch, roll and yaw motions for the quadcopter while an independent PD controller provides the tilt angles to the servo motors. The dynamic model of the tilt-rotor quadcopter is presented, based on which sliding surfaces were designed to minimize the tracking errors. Using the control inputs derived from these sliding surfaces, the state variables converge to their desired values in finite-time. Further, the non-linear sliding surface coefficients are obtained by stability analysis. Numerical simulation results demonstrate the performance and robustness against disturbances of this proposed sliding mode control technique.

This content is only available via PDF.
You do not currently have access to this content.