This paper presents a socially acceptable collision avoidance system for an automated vehicle based on the elastic band method. Both stationary and moving Vulnerable Road Users (VRUs: pedestrians or bicyclists) are considered in the proposed system. A collision free path is first determined and then Model Predictive Control (MPC) based vehicle front wheel steering is applied to track this collision free path. For the purposes of benchmarking and comparison, the results of a conventional PID steering controller are also presented. The designed system is tested with simulations on a path chosen from the west campus of the Ohio State University, whose waypoints are extracted automatically from OpenStreetMap (OSM). Simulation results show that the MPC based steering control system successfully achieves the required collision avoidance and path following and has comparable or better performance when compared with the conventional PID solution.
- Dynamic Systems and Control Division
MPC Based Automated Steering of a Low Speed Shuttle for Socially Acceptable Accident Avoidance
Wang, H, Cao, Y, Aksun Güvenç, B, & Güvenç, L. "MPC Based Automated Steering of a Low Speed Shuttle for Socially Acceptable Accident Avoidance." Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. Minneapolis, Minnesota, USA. October 12–14, 2016. V002T30A004. ASME. https://doi.org/10.1115/DSCC2016-9791
Download citation file: