This paper describes a modular 2-DOF serial robot manipulator and accompanying experiments that have been developed to introduce students to the fundamentals of robot control. The robot is designed to be safe and simple to use, and to have just enough complexity (in terms of nonlinear dynamics) that it can be used to showcase and compare the performance of a variety of textbook robot control techniques including computed torque feedforward control, inverse dynamics control, robust sliding-mode control, and adaptive control. These various motion control schemes can be easily implemented in joint space or operational space using a MATLAB/Simulink real-time interface.

By adding a simple 2-DOF force sensor to the end-effector, the robot can also be used to showcase a variety of force control techniques including impedance control, admittance control, and hybrid force/position control. The 2-DOF robots can also be used in pairs to demonstrate control architectures for multi-arm coordination and master/slave teleoperation.

This paper will describe the 2-DOF robot and control hardware/software, illustrate the spectrum of robot control methods that can be implemented, and show sample results from these experiments.

This content is only available via PDF.
You do not currently have access to this content.