This paper presents a new approach to simultaneously determine the optimal robot base placement and motion plan for a prescribed set of tasks using expanded Lagrangian homotopy. First, the optimal base placement is formulated as a constrained optimization problem based on manipulability and kinematics of the robot. Then, the constrained optimization problem is expressed into the expanded Lagrangian system and subsequently converted into a homotopy map. Finally, the Newton-Raphson method is used to solve the constrained optimization problem as a continuation problem. The complete formulation for the case of a 6-DOF manipulator is presented and a planar optimal mobile platform motion planning approach is proposed. Numerical simulations confirm that the proposed approach is able to achieve the desired results. The approach also shows the potential for incorporating factors such as joint limits or collision avoidance into the motion planning process as inequality constraints and will be part of future research.

This content is only available via PDF.
You do not currently have access to this content.