Model-based control design has the ability to meet the strict closed-loop control requirements imposed by the rising performance and efficiency demands on modern engineering systems. While many modeling frameworks develop control-oriented models based on the underlying physics of the system, most are energy domain specific and do not facilitate the integration of models across energy domains or dynamic time-scales. This paper presents a graph-based modeling framework, derived from the conservation of mass and energy, which captures the structure and interconnections in the system. Subsequently, these models can be used in model-based control frameworks for thermal management. This framework is energy-domain independent and inherently captures the exchange of power among different energy domains. A thermal fluid experimental system demonstrates the formulation of the graph-based models and the ability to capture the hydrodynamic and thermodynamic behaviors of a physical system.

This content is only available via PDF.
You do not currently have access to this content.